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Ship stability criteria based on chaotic transients
from incursive fractals
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This article surveys some recent findings in the nonlinear dynamics of driven
oscillators that appear to offer a new approach to the quantification of ship stability
in waves. The major discovery is that in situations where the resonant motions can
escape over a local maximum of the potential energy (as in capsize), there is always
likely to be a sudden reduction in area of the safe basin of attraction in the space of
the starting conditions. This is associated with a gross striation of the basin, and can
occur at a forcing magnitude that is a small fraction of that at which the final steady-
state motions lose their stability. It is argued that this well-defined basin erosion
could form the basis of a new design criterion based on transient motions. This
approach has the twin advantages of being both conceptually simpler and at the
same time more relevant than one based on a stability analysis of the steady state
rolling motions which can be dangerously non-conservative.
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Introduction

Recent developments in the field of nonlinear dynamics and chaos seem to play a
dual role in the long-standing problem of the capsizing of ships in waves. On the one
hand they explain the lack of success of traditional methods of dynamic analysis, by
showing that the problem is very much more complicated than hitherto envisaged in
the literature of naval architecture. On the other hand they suggest that transient
conditions, produced by the sudden arrival of a group of regular waves, and
traditionally regarded as hopelessly complicated, may in fact produce highly
repeatable capsize behaviour. This could form the basis of a new index of
‘capsizability ’, that might have considerable practical value. It is a paradox that
this macroscopic repeatability is the result of chaotic transients from incursive
fractals, which are a paradigm of microscopic unpredictability.

In the design office, the stability of a ship is currently judged on the basis of its ‘GZ
curve’, which is a graph of the hydrostatic restoring-moment experienced by the
vessel in still water, plotted as a function of the angle of roll. The criteria for ‘safety’
are at present purely empirical: it is for example specified that the areas (potential
energies) under various portions of the graph must exceed certain internationally
agreed figures, which have been found over the years to ensure acceptable stability
performance. It is, however, acknowledged in the naval architecture literature (see,
for example, the numerous relevant papers in Motora (1982)) that this procedure is
inherently unsatisfactory because it ignores the contributions made by dynamic
parameters, such as the important roll damping. To incorporate these parameters, a
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series of attempts have been made to idealize a ship as a harmonically excited
nonlinear spring-mass—damper system, and to analyse its stability by the classical
methods of analytical dynamics using, for example, harmonic balance methods,
perturbation schemes and Liapunov functions: this can again be seen in Motora
(1982). The hopeless complexity and ultimate irrelevance of all steady-state analyses
is clearly established by recent studies of a canonical oscillator that we shall describe
in this review.

Basic equation of rolling motion

By way of illustration, we consider here the modelling of a boat as a single degree-
of-freedom, non-linear oscillator. We should emphasize, however, that our con-
clusions are completely general. They apply to realistic computer models of ships in
a seaway, using, for example, developments in hydrodynamic strip theory (Rainey
1989, 1990) and, perhaps most crucially, to the physical models used in wave-tank
testing. The rolling motions of a boat in regular beam seas will be modelled then, most
basically, by an equation of the form,

10"+ B(0')+ C(0) = D sin (wr), (1)

where the angle of roll 6(7) is sometimes measured in a fixed reference frame, and
sometimes relative to the wave slope: a prime denotes differentiation with respect to
the real (unscaled) time 7. The rotational moment of inertia, /, will normally include
added-mass contributions from the surrounding fluid. The damping function B(6")
will depend crucially on the cross-sectional profile of the vessel, and will often be
highly nonlinear (see, for example, Lloyd 1989), modelled, for example, by an
expansion of the form 6+ 6'|6'|4+6’%: here the modulus in the quadratic term is
needed to ensure that the damping moment always opposes the instantaneous
angular velocity.

The restoring moment, C(6), of the buoyancy forces (less any overturning moments
due to wind or cargo imbalance) is also highly nonlinear, dropping to zero at an angle
of ‘vanishing stability’, 8,, where the corresponding potential energy,

V(6) = [C(6)d6,

has a local maximum. We shall assume throughout that 6 is measured from the stable
equilibrium state in still water, which in the presence of wind loading might be at a
small angle to the vertical. In naval architecture the basic buoyancy function, C(6),
in the absence of wind and cargo imbalance is invariably called the GZ curve, the
distance GZ on a diagram of a rolling boat being the lever arm of the buoyancy force
about the centre of gravity. To convert a ship’s GZ into a righting moment we must
therefore multiply by the weight of the vessel.

The periodic overturning moment due to regular lateral ocean waves can usually
be written as D sin (wr), where w is the encounter frequency and D will in general be
a function both of the wave height, H, and the frequency w.

Fundamental ratios and non-dimensional form

To facilitate comparisons between different vessels, it is convenient to transform
equation (1) into a standard non-dimensional form. We scale the angle to make the
positive angle of vanishing stability equal to unity, and we scale the time to make
the natural frequency of free linear undamped vibrations of the boat equal to unity.

Phil. Trans. R. Soc. Lond. A (1990)
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-1 0 1 2

Figure 1. Escape from the canonical potential well, showing (a) the cubic potential, and (b) the
phase portrait of the undriven autonomous system with ¥ =0 and f = 0.1.

In terms of the new scaled angle, , and the new scaled time, £, the equation of motion
can then be written as,

&+b(x)+c(x) = Fsin (wt), (2)
where a dot denotes differentiation with respect to the new scaled time ¢. The new
restoring function c(x) vanishes at * =0 and at « = 1, and has unit slope at the
origin: to get it from a naval GZ curve we can simply scale the horizontal axis so that
the angle of vanishing stability is at unity, and scale the vertical axis so that the slope
at the origin is unity, thereby circumventing any problems with units.

It is finally useful to identify three fundamental ratios (which by their invariant
nature will have remained unchanged during the transformation of the equation of

Phil. Trans. R. Soc. Lond. A (1990)
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motion). The frequency ratio between the forcing and natural frequencies, is now
simply w. The damping ratio is the conventional one of linear vibration theory, which
is here equal to one half of the linear coefficient within an expansion of b(x).

To define a suitable forcing ratio, we would want to divide ¥ by a representative
magnitude of ¢(x). No such forcing ratio will be needed in the present study, but some
remarks on the choice of the representative magnitude might be appropriate. One
possibility would be the maximum value of ¢ in the interval 0 < x < 1. But we feel
there is some advantage in taking the average value of ¢ in this interval, ¢,, which
in the new coordinates is numerically equal to the height of the potential barrier. The
forcing ratio would then be F/c,.

A parametrized family of GZ curves

Restoring-moment curves are often written as polynomials, and it is useful to
consider for a moment the family, parametrized by «,

c(x) = dv/dx = x(1 —x)(1 + ax), (3)

where v(z) is the corresponding potential energy. Potential energy curves are often
called curves of ‘dynamic stability " in the naval literature, but we prefer not to adopt
this rather unusual terminology here. Points of ‘vanishing stability’, where ¢ =
dv/dx =0, are at x =1 and at x = —1/a.

The case of @ =1 corresponds to a symmetric ship with no wind or cargo
imbalance : the potential energy has equal barriers at x = 41, and there is an equal
possibility of capsizing to port or starboard. As a is decreased towards zero, the
barrier at negative x gets progressively higher and further from the origin,
corresponding to a wind blowing towards positive x, and capsize towards negative x
becomes increasingly unlikely.

In a high wind (which would naturally be a component of any worst-case scenario),
capsize towards it can be totally discounted, and it is tempting to adopt the limiting
case of & = 0 in which ¢(z) is a parabola and v(z) is a simple cubic. This is in fact the
canonical cubic potential for which we first observed the dramatic basin erosion in
our fundamental investigations of the escape from a potential well (Thompson 1989 ;
Thompson & Ueda 1989; Soliman & Thompson 1989), which we summarize in the
following section. For comparisons with the nonlinear dynamics literature, it is
worth observing that & = —0.5 generates the extensively studied twin-well potential
(see for example, the paper by Ueda et al. 1990), with two equal wells symmetrically
disposed about a central energy barrier. We shall return to this twin-well oscillator
in a later section.

Escape from a canonical potential well

The concept of basin erosion, on which our new approach to ship capsize is based,
derives from the work of Thompson (1989) on the driven oscillator:

F+ pi+x—x® = Fsin (wf). (4)

Here the parabolic restoring force x—a? drops to zero at « = 1, where the total
potential energy v = 2x®—32® has a local maximum. The escape over this canonical
cubic potential barrier corresponds to capsize, this equation being in a sense the
simplest archetypal capsize model with x as a normalized roll angle (it corresponds
to a biased boat under wind loading, as we have described). A dot denotes
differentiation with respect to the time, ¢, and we shall write £=y.

Phil. Trans. R. Soc. Lond. A (1990)
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Tigure 2. Steady-state escape scenarios under slowly increasing F' at four values of the driving
frequency w: (@) 0.80; (b) 0.85; (¢) 0.90; (d) 0.95. Here the a coordinate is sampled stroboscopically
at the driving period and damping is constant at g = 0.1.

Figure 1 shows the form of v(z) and the response of the unforced system, with
F = 0, in the (x, y) phase space. Of particular relevance here is the basin of attraction
of the stable equilibrium state at (0, 0), shown in white and bounded by the inset of
the unstable hill-top saddle point.

Phil. Trans. R. Soc. Lond. A (1990)
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Figure 3. The final steady-state escape mechanism at w = 0.85 and £ = 0.1. Here z is sampled at
twice the driving period and at a phase of ¢ = 180°. Escape is at the blue sky catastrophe at which
the main sequence chaotic attractor collides with D¢, a directly unstable subharmonic oscillation
of order 6 created at the fold Z.

Some steady-state responses of the driven system are summarized in figure 2, which
shows plots of x, stroboscopically sampled at the forcing frequency, against ¥, for four
values of w. The linear viscous damping is held constant at § = 0.1, corresponding to
a damping ratio of { = 0.05, a fairly realistic value for the rolling of a ship.

In the lower diagram, with w = 0.95, we see a continuous curve corresponding to
a path of steadily growing (» = 1) harmonic oscillations of period 2n/w under slowly
incremented F. This finally splits into two with the onset of a subharmonic
oscillation of order n = 2 (period 4n/w) at a period-doubling flip bifurcation at C.
This is followed by an infinite cascade of flip bifurcations, generating subharmonics
of infinitely high order, a chaotic attractor, and finally escape out of the well at £.
This scenario persists at the lower values of w but with the addition of a hysteresis
loop, that under slowly varied F' at w = 0.85 would give two jumps (to resonance at
fold A, off resonance at fold B) as indicated by the arrows. Meanwhile the progressive
retreat of the chaotic bifurcation & to lower F values means that at w = 0.8 the escape
is directly from fold A as indicated. Optimal escape, at the lowest possible value of
F, is associated with a codimension-two bifurcation involving the coincidence of E
and A at a value of w just above 0.8. A detailed study of this local-global event is
presented by Stewart et al. (1990).

This optimal escape corresponds to resonant capsize under lowest possible waves,
and is clearly of particular importance. Our detailed study at « = 0.85, close to this
optimum, is therefore of practical relevance.
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Figure 3, whose details need not concern us here, is based on data kindly supplied
by Y. Ueda, and is taken from Thompson (1989). It shows the remarkable
complexity at the end of the period-doubling cascade. Here D is the second period-
doubling bifurcation at which 8%, the subharmonic of order n = 2 generated at C,
flips to give 8%, a subharmonic of order n = 4. The final escape is triggered by the
collision of the main-sequence chaotic attractor with a directly unstable subharmonic
oscillation of order n = 6, itself the remnant of a localized fold—cascade—crisis
scenario. This final chaotic blue sky catastrophe cannot be predicted by any
techniques of classical analytical dynamics.

Steady-state chaotic motions of a more realistic boat model have been identified
by Virgin (1987).

Basin erosion and its quantification

The basins of attraction of the stable attracting steady states in the space of the
starting values of displacement, x(0), and velocity, »(0), can be determined by a
variety of computational techniques. The simplest is a grid of starts, numerical time
integrations being simply run from a fine grid and the outcome, escape or non-escape,
recorded. A more sophisticated technique is to run time backwards from a ladder of
starts along the incoming eigenvector of the unstable hill-top saddle cycle to map out
the inset which is the separatrix defining the basin boundary: a sophisticated and
highly successful algorithm for this is given by Alexander (1989). Basins can also be
computed economically using Hsu’s cell-to-cell mapping techniques (Hsu 1987).

Figure 4 shows a sequence of safe basins, from which the system does not escape
within m = 16 forcing cycles, at w = 0.85. The pictures are separated by equal F
intervals, and the final steady-state escape at F® = 0.109 corresponds approxi-
mately to the last picture: the fact that not all trajectories have escaped at F =
0.110 is a consequence of the finite duration (m = 16) of the simulations. The steady
state Poincaré mapping points of the main sequence attractors (obtained by
stroboscopically sampling both « and y) are marked on the basins, those shown being
all » = 1 harmonic motions. The single point displayed in the region of resonant
hysteresis is that which would be observed physically under slowly increasing #': the
sudden change in position of the mapping point between F = 0.06 and F' = 0.07 is the
manifestation of the jump to resonance at F* = 0.069. The ultimate period-doubling
cascade, starting at F© = 0.1005, lies entirely between the last two pictures.

The major discovery of our work on the canonical escape equation (Thompson
1989 Soliman & Thompson 1989) is the dramatic sudden erosion of the safe basin,
apparent here as we pass from ¥ = 0.07 to F' = 0.08, due to incursive fractal fingers
which striate the entire basin.

This behaviour is quantified in figure 5 which shows the variation with f=F/FF®
of the area of the safe basin lying within an appropriate (x, y) window. The region of
resonant hysteresis is indicated, together with the value of F = 0.0633 at which
there is a homoclinic tangency between the inset and the outset of the hill-top saddle
cycle (Thompson 1989). This tangency, which can be predicted accurately by a
Melnikov perturbation analysis, signals the appearance of a homoclinic tangle and an
associated fractal basin boundary with the infinitely fine recurrent structure of a
Cantor set (Thompson & Stewart 1986; Moon 1987 ; McDonald et al. 1985).

The first manifestation of this fractal boundary in figure 4 is the thin finger at
F = 0.070, but recurrence arguments prove that at any value of F after the tangency
there must be an infinity of such fingers: so, although at the resolution of our grid

Phil. Trans. R. Soc. Lond. A (1990)
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Figure 4. Erosion of the safe basin of the canonical escape equation under increasing ¥ in the
window —0.8 <x < 1.2, —1.0 <y < 1.0. Parameters are w = 0.85, § = 0.1, m = 16, and the phase
is ¢ = 180°. F' increases in steps of 0.01 from 0 in (a) to 0.11 in (I).

Homoclinic tangency FE

r FRACTAL BOUNDARY -——.I
RESONANT
fe HYSTERESIS ™+ (a)

SMOOTH BOUNDARY

area of safe basin

FINAL
CRIsIS
r at Fl"
0 0.5 1.0
normalized forcing magnitude, /= F/FF

Figure 5. Integrity diagram showing the erosion of the area of the safe basin under increasing F at
w=0.85, f=0.1. Insets: (a) F =0.0725; (b) F = 0.0872.

Phil. Trans. R. Soc. Lond. A (1990)
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Figure 6. Comparative integrity curves for oscillators with quadratic (model F) and cubic (model
A) GZ curves. The forcing amplitude is normalized to unity at the final escape. Damping ratio,
0.05; frequency ratio, 0.85. Results courtesy of Alexis Lansbury.

there appears to be only a single finger at ' = 0.070, increasing magnifications of the
basin boundary would reveal an infinity of finer and finer whiskers. This fractal
boundary is only serious from a practical point of view if it becomes incursive and
invades the centre of the basin, as it clearly does at F = 0.080, giving the cliff-like
reduction in area of figure 5.

It is the complete incursive striation, coupled with the sharpness of the cliff, at the
relatively low value of f = 0.7, that makes this phenomenon of great significance to
engineers of many disciplines, including naval architecture. Alternative ways of
quantifying the loss of engineering integrity, by using, for example, the distance of
the steady-state attractor from its basin boundary, or the sensitivity of the attractor
to external superimposed noise, are explored by Soliman & Thompson (1989, 1990a).

Robustness under variation of the GZ curve

A vital question clearly centres on the robustness of the phenomenon under
changes in the GZ characteristics, and we have recently investigated this (Lansbury
& Thompson 1990) using the twin well oscillator which we refer to as model A. As we
have noted, this corresponds to the restoring moment of equation (3) with &« = —0.5.
This again represents a biased boat that can only capsize in the direction of positive
x, and the change from a quadratic to a cubic GZ introduces a small perturbation in
the restoring function. The vanishing of the cubic at x = 2, outside the range of
current interest, is irrelevant here.

Phil. Trans. R. Soc. Lond. A (1990)
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=074

(8)

a=0.74

Figure 7. Comparative safe basins for () model F and (b) model A using a cell-to-cell algorithm
courtesy of A. McRobie. Cell grid of 640 x 350 is synchronized with the screen pixels of an IBM PC.
Damping ratio 0.05; frequency ratio 0.85.

Taking identical values for the damping ratio and the frequency ratio this study
has obtained the very remarkable quantitative correlation of figure 6 for the erosion
of the safe basin. Here the forcing amplitude is in both cases normalized to unity at
the final escape value, eliminating the need for an arbitrarily defined forcing ratio.

The mechanism of erosion of model A (@ =—0.5) is, moreover, qualitatively
similar to that of our canonical model F (o = 0), with incursive fractals striating the
entire basin as shown in figure 7. These pictures were obtained using Hsu’s
cell-to-cell mapping technique with 640 x 350 cells synchronized with the pixels of
an IBM PC. The forcing magnitude is in each case 0.74 times that of the final escape.

The remarkable similarity of behaviour in these mathematically distinct oscillators
suggests that sudden basin erosion by incursive fractals is indeed a robust
phenomenon under conditions of near-optimal escape.

Role of the damping level
It remains to study the influence of damping on the basin erosion, and we present
an analysis of a linear system in the Appendix. This system is assumed to fail
(capsize) if x exceeds one, and the size of the safe basin is shown to depend
predominantly on just the single detuning:damping ratio given by
d= (wf_wn)/gwn’ (5)
Phil. Trans. R. Soc. Lond. A (1990)
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0.8

integrity, P,
o
'

0 0.4 0.8
normalized forcing magnitude, f

Figure 8. Comparison of the integrity diagrams at three damping levels for nonlinear and linear
oscillators. The normalized integrity measure, P, represents the normalized area of the safe basin.
Systems are the canonical escape equation and its linearization, with w = 0.85. Curves A: f = 0.1,
d =—3. Curves B: £=0.05,d =—6. Curves C: f=0.01, d = —30. ——, nonlinear; ——-, linear.

w,, being in the present context equal to unity due to our choice of time scale. The
safe basin is moreover shown to maintain its original area up to a value of f= p°
where

Pt =(1+d?+ (6)

For the relatively high values of d of interest at the moment, we can moreover ignore
1 in comparison with d* to obtain the approximate relation

pc X 1/d = gwn/(wf_wn)’ (7)

showing that at fixed frequencies, p° scales as the damping ratio. These results are
not expected to carry over quantitatively to the nonlinear problem, but do offer a
framework for the presentation of results.

Direct computer simulations of our canonical nonlinear oscillator (4), and its linear
counterpart obtained by striking out the #* term and deeming failure if = 1, yield
the integrity curves of figure 8 for three damping levels. Here the integrity measure
P, is the proportion of points from a grid of starts which do not fail within 16 forcing
cycles, normalized to unity at zero forcing: it is a good measure of the safe basin.

As we would expect from our linear study, the effect of decreasing the damping
coefficient f in our nonlinear equation (with w constant at 0.85) is to give an earlier
but less severe erosion. There is, indeed, one theoretical result from our nonlinear
studies that reinforces the trend suggested by (7). The onset of fractal basin is
predicted by Melnikov’s perturbation theory to be at a value of F given by

FM = fsinh (nw)/5nw?, (8)

and to the extent that the nonlinear cliff-top occurs just beyond F™ we again have
a direct scaling with . We cannot carry this result over into the normalized diagram
with abscissa f = F/F®, however, because we have no knowledge of how the steady
state escape value, F'E, scales with the damping.

It may well be that for the best linear to nonlinear correlation the detuning Aw =
w;—w, should be measured not from the linear w, but from a lower notional

Phil. Trans. R. Soc. Lond. A (1990)
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nonlinear value that acknowledges the softening action of finite amplitudes. We shall
not pursue this here, but simply note that quite irrespective of any d correlations, the
nonlinear integrity curves always exhibit a much more dramatic cliff-like feature.
Indeed it could perhaps be said that the nonlinearity, rather than being the cause of
erosion, serves to shore-up the top of the cliff, giving a delayed but necessarily more
precipitous eventual decline.

Discussion and Conclusions

Having studied a simple rolling model with different GZ characteristics and
different damping levels, we conclude that basin erosion by incursive fractals is a
robust phenomenon. This is further confirmed by companion studies of two real
ships, the Edith Terkol and the Gaul, whose dynamic parameters have been well
documented following their unexpected capsizes (Soliman & Thompson 1990b).

We think, therefore, that transients basins can offer a remarkably simple and
repeatable index of capsizability. It can additionally be argued, as in the following
three paragraphs, that they might represent a worst-case scenario, but our
contribution is in no way dependent on this viewpoint. This is because they certainly
represent a more realistic scenario than the one presently used by naval architects in
the design office, which, being based solely on the GZ curve, essentially corresponds
to still water!

Although sea-states and ocean waves are essentially random processes (but not
necessarily stationary ones), a short train or pulse of regular waves that can excite
resonant motions may be viewed as a worst-case scenario when considering capsize.
For practical purposes, a long train of regular waves can be assigned a probability
of zero.

Despite this, most researchers in the extensive literature on ship capsize under
regular forcing focus on just the single predominant steady-state motion, be it
harmonic, subharmonic or even chaotic. In this, they follow the tradition of
classical analysis, despite the fact that for a boat, with its relatively light damping,
regular waves will manifestly never persist long enough for transients to decay
substantially. Not only is steady-state analysis irrelevant, for this reason, but we
have seen that it is also grossly non-conservative.

To deal adequately with a short pulse, we must clearly look at transient motions,
and since the starting conditions of a boat at the beginning of the pulse may vary
widely, and are in any event unknown, we must look at all possible transient
motions. In other words we must adopt the global view of Poincaré’s geometrical
dynamics (Thompson & Stewart 1986) and inspect the ensemble of all possible
motions, rather than focus obsessively on the steady states. In doing this we are
likely to get a more robust result that will persist under small irregularities in the
forcing.

The simplest and most direct way to do this is to take a grid of starts in the space
of the starting conditions of roll angle 6, and roll angular velocity ¢;. Running a
simulation from each grid point, we can easily map out in (6,, d;) space the safe basin
from which transient motions do not lead to capsize within the specified duration of
the pulse.

The final objective will naturally be to determine a domain of safe operations in
the control space of wave height, H, against wave frequency, w, so at each w, for
example, the designer needs to specify a safe H. Resonant phenomena will incvitably
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focus greatest attention on w values close to w,, the natural roll frequency of the
vessel, the minimum of H(w) being usually just below w, due to the softening nature
of the restoring moment.

At such frequencies, we have shown that the area of the safe transient basin, A(H),
falls dramatically at a steep cliff at H* which can be a small fraction of H?, the forcing
at which the final attracting steady state loses its stability. Clearly H* should be
adopted in preference to H® in defining the operational locus in the (H, w) domain.
We feel that the resulting H(w) locus delineating the sea-states of safe operations,
will be a valuable new tool in the quantification of the stability of vessels at sea.
Rainey & Thompson (1990) have indeed already drawn the attention of naval
architects to the practical implication that such a transient capsize diagram, which
in operational terms might look like figure 9, can be constructed from such a
programme of simulations to give a well-defined measure of ‘capsizability’ clearly
superior to the time-honoured but arbitrary stability criteria based solely on the GZ
curve.

Using the robust grid-of-starts technique, a safe basin study is easier to perform,
and at the same time more relevant than steady-state analysis. Indeed, as we have
seen, our recent studies show that the steady states undergo infinite cascades of
period-doubling flip bifurcations, generating subharmonics of arbitrarily high order
and ultimately a chaotic attractor whose loss of stability cannot be located by
conventional analysis. This high level of dynamic complexity could never be
unraveled in routine investigations, and the final steady-state instability is in any
case extremely non-conservative when judged against the proposed safe basin
criterion.

The dramatic loss of safe-basin area, A(H), occurs after the basin boundary has
become fractal (infinitely textured) at H™, due to a homoclinic tangling of invariant
manifolds within the underlying dynamics (Thompson 1989). Starts within this
fractal zone lead to chaotic transients, which oscillate hesitatingly for an arbitrary
and unpredictable length of time before the boat either capsizes or settles to a safe
condition of steady-state harmonic rolling.

This phenomenon is not in itself serious, provided that the fractal zone to which
it is confined remains as a thin layer around the edge of the basin, as it does for H
just above HT. However, our studies have shown that as H is further increased the
fractal boundary soon becomes incursive with thick finger-like striations penetrating
into the very heart of the central zone around the origin 6, = 6; = 0. Once this has
occurred, the vessel is clearly in an unpredictable and therefore dangerous state.

It is this sudden incursive penetration that causes the well-defined loss of area at
H!, so to pin-point the latter we do not need to use a massive grid of starts but can
make just a small number of trial simulations (or model tests) in which a ship in
relatively calm water suddenly encounters a train of large regular waves: if the wave
height is below the level corresponding to the cliff the ship will remain upright; if it
is above it, the ship will capsize repeatably. Indeed a trial simulation from the
ambient state at the origin will often be adequate to locate the cliff at H* with
sufficient precision for practical purposes (Thompson & Soliman 1990). Our studies
show moreover, that despite the unpredictability of chaotic transients, simulations
need only be continued for about 16 wave periods: at a pragmatic engineering level,
if a boat does not capsize in 16 forcing cycles it is unlikely to capsize at all.

Requiring, then, perhaps only a single simulation from an ambient start at each
(H, w) sea-state, we have a feasible investigation for either computer studies (see, for
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Tigure 9. A schematic transient capsize diagram showing how the concepts might be presented
in operational terms. ——, quartering seas; ———, beam seas.

example, Miller et al. 1986) or model testing in a wave tank, an investigation that
offers distinct advantages over one based on the outdated and narrow concept of
steady-state rolling motions.

For practical application, the realism of the nonlinear spring-mass-damper model
of ship dynamics would of course be under scrutiny : fortunately, recent developments
in hydrodynamic strip theory (Rainey 1989, 1990) promise much more realistic yet
still economic simulations. In any event, the generality of the homoclinic tangency
mechanism of basin destruction that we have described means that the above
transient testing procedure should be equally satisfactory for physical model tests.
Hitherto the standard model wave-tank procedure has been to test for capsize in
irregular waves of known spectrum, requiring very long experiments, which even
then have frequently not produced any capsizes at all (see, for example, Morrall
1981), because sufficiently steep waves occur so rarely in standard sea spectra.

To make a rational assessment of capsizability in either computer simulations or
model tests it is indeed necessary to induce a large number of capsizes. In this respect
we can draw an instructive parallel with the elastic and plastic approaches to
structural safety and collapse. Operational simulations under realistic levels of
stochastic forcing are necessary to assess expected roll angles, which must be
acceptably low for servicability and passenger safety: these correspond to elastic
analyses of working stresses and deflections. By comparison, capsize simulations,
under severe and statistically rare wave excitation, test the ultimate resistance to
capsize, akin to plastic collapse analysis. We feel that our new transient capsize
approach, like plastic mechanism analysis of portal frames, is both easier and more
relevant than alternative procedures.

J.M.T.T. gratefully acknowledges the award of a Senior Fellowship by the Science and
Engineering Research Council of the United Kingdom. He would also like to thank Steve Bishop
for his early work on the Melnikov perturbation theory, Alexis Lansbury for figures 6 and 7, and
Allan McRobie for his efficient computer algorithms.
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Figure 10. Phase-space representation of the response of a forced linear oscillator,
in terms of the particular integral and complementary function vectors.

Appendix. Some linear insights using a rotating frame of reference

The transient behaviour of a linear driven oscillator, as might for example be
obtained by deleting the z* term from our equation (4), can supply some useful
insights and reference curves of basin erosion if we deem it to have failed whenever
x exceeds one. To model an asymmetric problem we could specify failure if x > 1,
while to simulate a symmetric equation we could specify failure if |x| > 1. The
analysis we present gives the same answer for either case, but the approximation will
work less well for the asymmetric case.

The transient behaviour of our linear system can be simply visualized in the phase
space of figure 10 as the vector sum of the particular integral (PI) representing the
final steady state response to the harmonic excitation, plus the complementary
function (CF). The scaling of the velocity axis is chosen to make the unforced,
undamped vibrations circular, so the PI describes an elliptical path which is
constructed geometrically from the circle swept out by N at the forcing frequency w;.
The radius ON is of length p, which is proportional to the strength of the forcing and
is adopted as a convenient control parameter. Meanwhile the CF decays to zero as a
spiral at the natural angular frequency w, with a decay rate corresponding to the
damping ratio ¢, assumed small. Focusing on the symmetric problem, failure
(capsize) is deemed to occur if the resultant of the two vectors crosses into one or
other of the shaded areas of the figure.

A convenient device for studying the properties of the safe basin is to adopt the
viewpoint of an observer rotating and translating with the axes Qxy, where QP, of
length p, is parallel to ON. The angular velocity of these axes is the constant w;, and
in this rotating frame the shaded failure areas appear as two half-planes rotating in
the opposite direction at the harmonic excitation frequency. Because they
continuously touch a circle of unit radius centred on Q, they will appear to cover all
but this area as they rotate, as shown in figure 11. Meanwhile the complementary
function appears as a decaying circular spiral, but instead of taking a time 2n/w,, per
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(6)

Tangent

Unsafe spiral (d)

Figure 11. Trajectories of a linear system viewed in a rotating referen?e frame, showing the
progressive erosion of the safe basin. p¢ = cosy = cos(arctand) = (1+d?) 2 (a) p < p°, (b) p = p°
(first tangency), (¢) p > p°, (d) p = 1 (this shows a blow-up of the parabolic limit; the circle appears
as a straight line; and the area scales as (1 —p)?, giving parabolic beach).

revolution, it will now take 2n/Aw in terms of the detuning Aw = w;—w,,. During this
time it will have decayed by a factor exp (2n{w, /Aw) rather than merely exp (2n¢),
so that for a small detuning ratio Aw/w, the spiral will appear to contract much more
steeply, as illustrated.

Now the spiralling trajectory of a damped unforced oscillator is never a true spiral
with a constant angle between the trajectory and the radius vector, but can be
approximated as such if the damping is light. Under the rotation of the reference
frame, a true spiral will remain a true spiral, with, however, a change in the constant
angle. From these considerations we can conclude that in our rotating frame of figure
11, the angle of the spiral, denoted by vy in figure 114, is given by y = arctan d, where
d = Aw/{w, is the detuning-damping ratio. Thus, strikingly, the slope of the spiral
in the rotating reference frame is controlled as much by the detuning ratio as by the
damping. Focusing attention on small values of the detuning ratio, the counter-
rotating failure areas will be rotating much faster than the spiral, making failure
inevitable whenever the spiralling trajectory strays outside the circle that they mark
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Figure 12. Safe basin plots for the linear system using the single detuning-damping parameter. The first
tangency, at p°, is indicated by a black triangle for four values of d. The values of d are: (a) oo (zero-
damping parabola); (b) 30; (c) 4; (d) 3; (e) 2; (f) 1; (9) 0.5. ———, d = 0 (zero detuning).
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out. We therefore reach the important conclusion that the size of the safe basin at
a given value of p will be governed solely by the detuning-damping ratio d, and will
not be controlled independently by the detuning and damping ratios themselves.
The corresponding integrity curves are likewise parametrized solely by d, and their
characteristics are revealed by a further consideration of figure 11. The problem is to
relate the area of the safe, non-failing starts to the forcing level as measured by p,
which is the distance from the centre of the spiral, P, to the centre of the unit circle, Q.
When this level is small as in figure 11a, trajectories starting anywhere within the
circle will safely complete their spiral course, so the basin area remains exactly equal
to the area, 71, of the circle. At the larger excitation level of figure 11¢, however, some
spiral trajectories leave the circle and create an unsafe area behind, bounded by the
tangent spiral shown. Clearly this starts to happen when there are points on the circle
at which the angle § between a tangent and a line to P is less than the characteristic
angle, y, of the spiral. Now with reference to figure 115 we can observe that since

z cosa = p and cos f = ¢, the obvious inequality p > ¢ implies > «: in other words
— > the minimum value of # occurs at the point R where PR is at right angles to PQ.
O H Hence the first tangency occurs at R when o = y giving the value of p for first erosion
e E of the circle as .

O ¢ = cosy = cos(arctand) = (1+d?)™. (A1)
E 9) We notice here that the sign of d (i.e. the sign of Aw) is irrelevant, figures 10 and 11

having been drawn, arbitrarily, for the case of Aw negative.

Beyond this critical ‘cliff-top’ value, the area of the safe basin decays progressively
with p, as it becomes increasingly bounded by the tangent spiral, whose intersection,
S, with the circle moves round anticlockwise in figure 11¢ as p tends to one.

Approximate trigonometric formulae for the variation of the safe area with p, as
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parametrized by d, can be written down, but will not be presented here. It is, however,
of interest to look finally at the limiting case as p approaches unity, and the area
shrinks to zero. This is illustrated in the blow-up of figure 11d where the circle
appears as a straight line. Diagrams at different, small values of 1 — p are therefore self-
similar, and the area therefore scales as (1 —p)?, giving a parabolic beach at the foot
of the cliff.

Direct computer simulations of a linear system, with both symmetric and
asymmetric failure criteria, confirm the dominant role of the single detuning-
damping parameter, d, the effect of varying the two parameters Aw and { at constant
d having only a secondary minor effect on the integrity curves. The results are
summarized in figure 12, which shows the curves, parametrized by d between the two
limits of d = 0 (two straight lines) and d = oo (a parabola).

The former corresponds to a situation with no detuning. The PI and CF are
therefore synchronized, and in the rotating reference frame the trajectories move
along straight lines towards P : there is no possibility of a tangency, and the full circle
remains the safe basin until P itself passes outside the circle at p = 1. The latter
limiting case of d = oo arises when there is no damping. The CF rotates in a circle
about P, and the safe area is a shrinking circle of radius 1 —p and area (1 —p)>.

The values of p° from equation (A 1), corresponding to the first tangency at which
our simplified analysis predicts the first decrease in the safe area, are marked by the
black triangles. These are seen to be a useful guide to the beginning of the erosion
process.
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